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Harvey Mudd College Clinic Program

“I gained the idea that engineering was like dancing; you don’t learn it in a darkened lecture hall watching 

slides: you learn it by getting out on the dance floor and having your toes stepped on.”
- Jack Alford, Professor of Engineering Emeritus, Cofounder of the Engineering Clinic, Harvey Mudd College 1963

● Teams of four to five juniors and seniors

● Professional design and development projects for industry sponsors

● Objective: to produce useful results on an open-ended authentic project to 

the sponsor’s satisfaction within the constraints of time and budget
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Problem Statement

The Syntiant-HMC Clinic team will demonstrate the 

versatility and power efficiency of the Syntiant NDP101 chip 

by designing a battery-powered application that receives live 

data from sensor(s) and uses a neural network running on 

the chip to detect significant events.
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● Microphones 

● Wakewords (“Alexa”)

● Small/low-power electronics

Interpreting our Problem Statement
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● Microphones 

● Wakewords (“Alexa”)

● Small/low-power electronics

● Inertial Measurement Unit

● Unique motions and gestures

● Small and low-power smartwatch

Interpreting our Problem Statement
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Design Alternatives

Application
Be always-on 
and battery 

powered

Be an 
application of 

machine 
learning

Be demonstrable 
and tangible

Be feasible to 
collect and use 

data

Be feasible to 
implement

Be marketable in 
time and volume

Identify dead 
pointe shoes 3 3

Constrained by 
time and shoe 
dependencies  

(1)

Limited by existing 
data and minimal 
access to many 

pointe dancers  (2)

3
Restricted to 
niche ballet 
market  (2)

Identify 
gestures 3 3 3 3 3 3

Identify body 
movements 3 3 3 3 3

Implemented 
previously in 
large battery 
systems  (2)
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Wrist-Based Gestures

● Time-checking

● Pronating

● Supinating
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Watch-Checking Demonstration
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https://docs.google.com/file/d/1M9vt8L_fjmySXBBfo9fZ2nYB3lQczcQT/preview


Watch-Checking Demonstration
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Prototype Breakdown

Data Collection Neural Network 
Training

NDP101 
Demonstration 

Printed Circuit 
Board Design
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Data Collection
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Data Collection Hardware
BMI160
3-axis accelerometer
3-axis gyroscope
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Physical System Schematic

J2
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Demo and Data Collection System

BMI160

NDP9101
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https://docs.google.com/file/d/1M9vt8L_fjmySXBBfo9fZ2nYB3lQczcQT/preview


Data Collection Involves Multiple Gestures
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Additional Gestures
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Typical Data Instances 

● 2.4 seconds of BMI160 data sampled at 100 Hz.

● 240 sampled values on each axis. 
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Data Augmentation
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Data Collection Composition
Large Scale Collection
● 26 participants and 2 team members
● 10 sitting watch-checking, 10 standing watch-checking, 10 

supination, 10 pronation per person
● ~16 augmented samples per original sample

Previous Data Collection
● 300 watch checking by team members
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Data Visualization
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https://docs.google.com/file/d/1mJd7R_uZ2jISVQ8Kl5eCC__c-Q0_x5qL/preview
https://docs.google.com/file/d/1ldaUuT5jRKxbX9BKhZAW0jVgvqo_klVM/preview


Network 
Training
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Network Architecture

Watch-check

Supination

Data Instance

... ... ......

L1 L2 L3 OutputInput

256 256 256 41600

Pronation

No Gesture
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Dataset Composition
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40,063 Total Data Instances



Network Performance 

Validation Accuracy 94.44%

Test Accuracy 96.86%

Precision 85.16%

Recall 100%

False Activation Rate 237/day

Partition Watch-check Supination Pronation No-Gesture Total

Val. Total 78 40 40 328 486
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Effect of Time-Shifting
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Implementing time-shifted data increased validation accuracy by 2%

Time-Shifting No Time-Shifting

Validation Accuracy 94.44% 92.64%

Partition Watch-check Supination Pronation No-Gesture Total

Val. Total 78 40 40 328 486



Effect of Time-Shifting

No-Time Shifting (92.64%) Time-Shifting (94.44%)
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Implementing time-shifted data increased validation accuracy by 1.8%.



NDP101
Demo
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Framing for Input window
Each Data Instance is 1600 bytes - consider as 40 frames of 40 bytes.

A frame:

All 6 axes sampled from the BMI160 every 10 milliseconds.

Each frame contains 60 milliseconds of consecutive data.
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Framing for Input window
Each Data Instance is 1600 bytes - consider as 40 frames of 40 bytes.

A frame:

A full window:
(40 frames, 1600 bytes)
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Demo Considerations

Development of the Demo halted prematurely due to technical freeze.

● Implement and Test Current Network on NDP101

○ Compare test accuracy on the NDP101 to test accuracy on Tensorflow

● Compute actual false activation rate (FAR)

● Reduce latency between gesture and LED response
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Watch-Checking Demonstration
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https://docs.google.com/file/d/1M9vt8L_fjmySXBBfo9fZ2nYB3lQczcQT/preview


Demo Latency Experiment
Assess latency of networks with gestures at each of these positions within the NDP101 input window
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Demo Latency Experiment
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Including time-shifted data potentially reduces latency to 0.78 seconds



Demo Latency Experiment
Potential cause of remaining latency:

● Frames must be sent to the NDP101 
every 60 milliseconds.

● Tested demo iteration sends a new 
frame every 80 milliseconds.

● Excess 20ms * 40 frames = 800ms

● For a full window, ~.8 seconds 
latency
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PCB
Design
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Benefits of a Custom Printed Circuit Board

1.5”
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Implementation of the Board
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Components Consume Minimal Power 

Neural Network 
Chip (NDP101)

60 µA

Accelerometer/ 
Gyroscope 
(BMI160)

925 µA

Microprocessor 
(ATSAMD21)

2.04 mA
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Battery Life:

65.4 hours

Battery
(RJD2450)

200mAh



Battery Life:

196 hours

Components Consume Minimal Power 

Neural Network 
Chip (NDP101)

60 µA

Accelerometer/ 
Gyroscope 
(BMI160)

925 µA

Microprocessor 
(ATSAMD21)

2.04 mA2.04 mA
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Battery
(RJD2450)

200mAh



Other Components Enable Additional Features 

Charlieplexed LED array

To indicate up to 64 motions

6 pin JTAG

To program and debug 
the microcontroller

32kHz CMOS 
oscillator

To generate reference 
clocking

LDO regulators

To regulate 3.3V 
and 0.9V supplies

64 Mb serial flash 
memory

To store the neural 
network

Coin cell battery 

To provide power
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Assembled Board
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Current Progress

● Arduino Bootloader loaded

● Can print to USB serial

● Can blink LEDs

● Cannot use SPI to NDP101
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Conclusion



Deliverables
Data:
● Original Dataset
● Augmented Dataset
● Data Description File
● Logging scripts

Network:
● Train_accelerometer.py
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Demonstration:
● Demo scripts
● GRB firmware

Hardware:
● Raspberry Pis
● NDP9101s
● BMI160s
● Gesture Recognition Boards
● Spare parts for the GRB



Future Work

● Complete board bringup by fully implementing firmware

● Test network features on completed board — latency, false activation 

etc. — and tune network as necessary

● Expand data collection to more people
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Thanks for Your Time!

Special thanks to

Jay Cordaro and Yao Gao (Board Design Review)

Paul Williams (Board Assembler)

Kaveh Pezeshki (HMC Engineering Server Admin)
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Questions?
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How the Prototype Hardware Works

Sensor

Raspberry 
Pi

NDP101 Raspberry 
Pi

Decision

Motion

Motion

Sensor

Raspberry 
Pi

NDP101 Raspberry 
Pi

Decision
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Current Prototype Layout

NDP101
Trained Neural 

Network

Raspberry PiLED
BMI160

Accelerometer
Gyroscope

NDP9101: Training Development Platform

BMI160 Eval Board

GND
VCC
SDA
SCL

(wired I²C)

(on-board 
connection)

(on-board 
connection)
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